Acta Crystallographica Section E

Structure Reports Online
 ISSN 1600-5368
 Ji-Zhong Yan, Jian Li and Guo-Wu Rao*

College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, People's Republic of China

Correspondence e-mail: rgw@zjut.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.047$
$w R$ factor $=0.119$
Data-to-parameter ratio $=11.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography All rights reserved

11,11a,13a-Trimethyl-2,3,3a,3b,4,5,5a,6,11,11a,-11b,12,13,13a-tetradecahydro-1H-7-azaindeno-[5,4-a]anthracen-1-ol methanol solvate

In the title compound, $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{NO} \cdot \mathrm{CH}_{4} \mathrm{O}$, the asymmetric unit consists of one molecule of $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{NO}$ and one methanol solvent molecule, which are connected through $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds leading to the formation of zigzaglike chains parallel to the a axis.

Comment

Testosterone derivatives exhibit a high level of biological activity and have been widely used as hormone treatments (Alvarez-Ginarte et al., 2005). As part of our continuing interest in the structure-activity relationship of testosterone derivatives, we report here the structure of the title compound.

(I)

The asymmetric unit of the title compound consists of one molecule of $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{NO}$ and one methanol solvent molecule, which are connected through $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond (Table 1 and Fig. 1). The occurrence of a second hydrogen-

Figure 1
The asymmetric unit of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are drawn as spheres of arbitrary radii. The hydrogen bond is shown as dashed lines.

Figure 2
View showing the $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding and the formation of the zigzag-like chain. The hydrogen bonds are shown as dashed lines and H atoms not involved in hydrogen bonds have been omitted for clarity. [Symmetry code: (i) $\frac{1}{2}-x, 1-y, z-\frac{1}{2}$].
bonding interaction, $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$, between the H atom of the hydroxyl group of the molecule and the O atom of the solvent molecule, results in the formation of a zigzag-like chain parallel to the a axis (Table 1 and Fig. 2).

Experimental

The title compound was prepared according to the procedure of Yan et al. (2006) by reaction of propargylamine and 17-hydroxy-1,10,13-trimethyldodecahydro- 2 H -cyclopenta $[a]$ phenanthren- $3(4 H, 9 H, 14 H)$ one. A solution in methanol was gradually concentrated at room temperature to afford colourless crystals suitable for X-ray analysis.

Crystal data

```
\(\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{NO} \cdot \mathrm{CH}_{4} \mathrm{O}\)
\(M_{r}=371.55\)
Orthorhombic, \(P 2_{1} 2_{1} 2_{1}\)
\(a=7.4389\) (19) A
\(b=10.599\) (4) \(\AA\)
\(c=27.299\) (8) \(\AA\)
\(V=2152.4(12) \AA^{3}\)
```


Data collection

Rigaku R-AXIS RAPID

diffractometer
ω scans
Absorption correction: multi-scan (Higashi, 1995)
$T_{\text {min }}=0.957, T_{\text {max }}=0.966$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.119$
$S=1.04$
2825 reflections
251 parameters
H -atom parameters constrained

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.147 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.07 \mathrm{~mm}^{-1} \\
& T=298.1 \mathrm{~K} \\
& \text { Chunk, colourless } \\
& 0.46 \times 0.42 \times 0.33 \mathrm{~mm}
\end{aligned}
$$

4930 measured reflections
2825 independent reflections
2283 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=27.5^{\circ}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0527 P)^{2}\right. \\
& +0.4327 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.003 \\
& \Delta \rho_{\max }=0.18 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.14 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.012 \text { (2) }
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1 $\cdots \mathrm{O} 2$	0.82	1.94	$2.750(3)$	170
O2-H2 $\cdots \mathrm{N} 1^{\mathrm{i}}$	0.82	1.96	$2.746(3)$	161
Symmetry code: (i) $-x+\frac{1}{2},-y+1, z-\frac{1}{2}$				

H atoms were included in calculated positions and treated as riding on their parent atoms with $\mathrm{C}-\mathrm{H}$ distances of $0.96 \AA\left(\mathrm{CH}_{3}\right), 0.97 \AA$ $\left(\mathrm{CH}_{2}\right), 0.98 \AA\left(\mathrm{CH}_{\text {methine }}\right)$ and $0.93 \AA\left(\mathrm{CH}_{\text {aromatic }}\right), \mathrm{O}-\mathrm{H}$ distances of $0.82 \AA$, and $U_{\text {iso }}=1.5 U_{\text {eq }}(\mathrm{C}, \mathrm{O})$ for CH_{3} and hydroxy H atoms and $1.2 U_{\text {eq }}(\mathrm{C})$ for all others. As the compound contains no atoms heavier than Si , the absolute configuration could not be determined unambiguously and has been assigned arbitrarily; Friedel pairs were merged.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC \& Rigaku, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

We are very grateful to Professor Jian-Ming Gu of the Center of Analysis and Measurement of Zhejiang University for help with the X-ray diffraction experiment.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Alvarez-Ginarte, Y. M., Crespo, R., Montero-Cabrera, L. A., Ruiz-Garcia, J. A., Ponce, Y. M., Santana, R., Pardillo-Fontdevila, E. \& Alonso-Becerra, E. (2005). QSAR Comb. Sci. 24, 218-226.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC \& Rigaku (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, The Woodlands, Texas, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Yan, J. Z., Xia, C. C. \& Rao, G. W. (2006). Acta Cryst. E62, o1586-o1587.

